
Homework 6 Solutions

Math 131B-2

• (9.2) (a) If f(x) = x, |f(x) − fn(x)| = |x|
n

is bounded on any bounded interval. Ergo
fn → f uniformly. Moreover, if g(x) = 0 when x is irrational or 0 and g(x) = b when
x = a

b
is rational, and a and b are coprime, b > 0, then |g(x)−gn(x)| = 1

n
. Ergo gn → g

uniformly.

(b)Notice that hn(x) converges pointwise to hn(x) = 0 when x is irrational or 0, and
hn(x) = a when x is rational and can be written as x = a

b
such that a and b are coprime

integers and b > 0. If hn converges uniformly on a bounded interval I ⊂ R, hn must
converge uniformly on some closed [c, d] in I. Then given ε = 1, there is some N such
that n ≥ N implies that |h(x)−hn(x)| < ε for all x ∈ [c, d]. Without loss of generality
we can assume c and d have the same sign. Now observe that when x = a

b
is rational

we have
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Here the last inequality follows from the observation that a and x have the same sign,
since b > 0. However, we contend there are rational numbers x = a

b
with arbitrarily

high a in any interval [c, d]. For suppose not. Then there would be some M such that
if x ∈ [c, d] and x = a

b
, we have |a| < M . But c < a

b
< d implies that bc < a < bd.

Therefore M > |a| > min{|bd|, |bc|}. There are finitely many pairs a and b satisfying
this equation for any c and d, but this is nonsense because we know there are infinitely
many rationals in [c, d]. Therefore |a| is not bounded on any interval [c, d], implying
that the convergence cannot hn → h cannot be uniform.

• (9.3)(a) Straightforward triangle inequality. (b) Suppose that fn → f and gn → g
are uniformly convergent, and fn, gn are all bounded. By (9.1) {fn} and {gn} are
uniformly bounded, i.e. there exists M1 such that |fn(x)| < M1 for all n ∈ N and
x ∈ S and M2 such that |gn(x)| < M2 for n ∈ N and x ∈ S, and therefore |g(x)| ≤M2

for x ∈ X. Let M = max{M1,M2}. Given ε > 0, choose N1 such that n ≥ N1 implies
|fn(x)− f(x)| < ε

2M
and N2 such that n ≥ N2 implies |gn(x)− g(x)| < ε

2M
. Then for



n ≥ N = max{N1, N2} and any x ∈ X, we have the following for h(x).

|hn(x)− h(x)| = |fn(x)gn(x)− f(x)g(x)|
≤ |fn(x)gn(x)− fn(x)g(x)|+ |fn(x)g(x)− f(x)g(x)|
= |fn(x)||gn(x)− g(x)|+ |fn(x)− f(x)||g(x)|

< M · ε

2M
+

ε

2M
·M

= ε

We conclude that hn → h uniformly.

• (9.14) We see that the pointwise limit of {fn} is f(x) = 0 and the pointwise limit of
f ′n(x) = 1−nx2

(1+nx2)2
is the function g(x) with the property that g(0) = 1 and g(x) = 0 for

x 6= 1.

(a) We see that f ′(x) = 0 exists everywhere, but f ′(0) = 0 6= 1 = g(0).

(b) Note that 1 +nx2 ≥ 2
√
n|x|, so for any x ∈ R, we have |fn(x)| = |x|

1+nx2
≤ 1

2
√
n
. We

can use this bound, which does not depend on x, to show the convergence fn → 0 is
uniform on R.

(c) Since each f ′n is continuous at 0 but g(x) is not continuous at 0, our interval cannot
contain 0. Let [a, b] be any closed interval such that a > 0. Then we have
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We can use this bound, which does not depend on x, to show fn → 0 uniformly on
[a, b]. The situation is similar on [a, b] when b < 0, only replacing a with b in the
inequality above.

• (9.16) We know that
∫ 1

0
fn →

∫ 1

0
f as a sequence of real numbers. Now, since fn → f

uniformly, by (9.1) {fn} is uniformly bounded, i.e. |fn(x)| < M for all n ∈ N and

x ∈ [0, 1]. Ergo |
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fn| < M( 1
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) = M

n
. Therefore we see that |
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The last term goes to zero as n goes to infinity, so in fact
∫ 1− 1

n

0
fn →

∫ 1

0
f .



• (9.22) We observe that |an sin(nx)| ≤ |an| and likewise |an cos(nx)| ≤ |an|. Ergo by the
Weierstrass M-test, if

∑
|an| converges the series

∑∞
i=1 an sin(nx) and

∑∞
i=1 an cos(nx)

converge uniformly.

• Dini’s Theorem Let fn : X → R be a sequence of functions on a compact metric space
X which converges pointwise to a continuous function f : X → R and suppose that
for each x the sequence {fn(x)} is increasing, i.e. fn(x) ≤ fm(x) for all n < m. We
will prove that {fn} in fact converges to f uniformly.

– Let gn = f − fn. Then gn is a continuous function, because f and fn are continu-
ous. Therefore V ε

n = {x ∈ X : |gn(x)| < ε} = g−1n ((−∞, ε)) is the preimage of an
open set under a continuous function, hence open. Moreover, since n < m implies
fn(x) ≤ fm(x) for all x ∈ X, we see that n < m implies that gn(x) > gm(x).
Therefore V ε

n ⊆ V ε
m.

– Because fn → f pointwise, for each x ∈ X there is some Nx such that n ≥ Nx

implies that 0 ≤ f − fn(x) < ε. Ergo x ∈ V ε
n for all n ≥ Nx. Since this is true

for all x, the sets V ε
1 ⊂ V ε

2 ⊂ V ε
3 ⊂ · · · cover X. Ergo since X is compact, there

is some finite subcover of the V ε
n which cover X. But since the V ε

n are ascending
sets this just means there is some N such that V ε

N contains X.

– Since X ⊆ V ε
n for some N , we know that |gn(x)| = |f − fN(x)| < ε for all x ∈ X.

Moreover, since n ≥ N implies fn(x) ≥ fN(x), in fact whenever n ≥ N , we see
that |f(x)− fn(x)| < ε. Since ε was arbitrary, fn → f uniformly.

– A question of arclength. Let fn(x) = 1
n

sin(nx), then f ′n(x) = cos(nx). Ergo the

arclength Sba(fn) =
∫ π
0

√
1 + cos2(nx)dx. Observe that cos2(nx) ≥ 1

2
on a set

A composed of the union of the intervals [0, π
4n

], [ (n−1)π
4

, π], and [ (4k−1)π
4n

, (4k+1)π
4

]
for all 1 ≤ q ≤ n. The lengths of these intervals add up to π

2
. Ergo on A,√

1 + cos2(nx) ≥
√

3
2
. On the remaining intervals [ (4`+1)π

n
, (4`+3)π

n
], whose lengths

also sum to π
2

for 0 ≤ ` ≤ n− 1, we have
√

1 + cos2(nx) ≥ 1. Therefore we have

the lower bound
∫ π
0

√
1 + cos2(nx)dx ≥ π

2

√
3
2

+ π
2
(1) > π. Since the arclength of

f ≡ 0 is π, we cannot have Sba(fn) → Sba(f). We would have to add a hypoth-
esis about uniform convergence of the derivatives to ensure convergent arclengths.

• Continuity makes life easier.

– Since each f ′n is continuous on (a, b), their uniform limit g is continuous. More-
over, continuous functions on closed intervals are integrable, so

∫ x
x0
f ′n and

∫ x
x0
g

exist for all x ∈ (a, b) (bearing in mind that if a < b, the integral
∫ a
b
f ≡ −

∫ b
a
f).

Ergo
∫ x
x0
f ′n →

∫ x
x0
g. [There’s one subtlety here: we proved uniform convergence of

functions defined by the integral on a closed interval [a, b] in class. But it remains



the case that if |f ′n(x) − g(x)| < ε for all x ∈ (a, b),
∫ d
c
|f ′n(x) − g(x)| ≤ ε(b − a)

for any closed interval [c, d] in (a, b). So the proof extends with no issues.]

– Nothing to prove; fn(x)− fn(x0)→
∫ x
x0
g uniformly.

– Let f : (a, b) → R defined by f(x) = L +
∫ x
x0
g. Notice that fn(x) = fn(x0) +

(fn(x)− fn(x0)). Now fn(x0)→ L as a sequence of real numbers, so given ε > 0
there is an N1 such that |fn(x0) − L| < ε

2
. Moreover, by the second part of this

problem, there is an N2 such that n > N2 implies that |(fn(x)−fn(x0))−
∫ x
x0
g| ≤ ε

2

for all x in (a, b). Ergo, for n ≥ max{N1, N2}, we have |fn(x) − f(x)| ≤
|fn(x)− L|+ |(fn(x)− fn(x0))−

∫ x
x0
g| < ε, and therefore fn → f uniformly.

– Since g is continuous, by FTC Part II, f ′(x) = 0 + g(x).

Citation: This outline is based on the proof in Tao’s Analysis II.


