Homework 6 Solutions

Math 131B-2

- (9.2) (a) If $f(x)=x,\left|f(x)-f_{n}(x)\right|=\frac{|x|}{n}$ is bounded on any bounded interval. Ergo $f_{n} \rightarrow f$ uniformly. Moreover, if $g(x)=0$ when x is irrational or 0 and $g(x)=b$ when $x=\frac{a}{b}$ is rational, and a and b are coprime, $b>0$, then $\left|g(x)-g_{n}(x)\right|=\frac{1}{n}$. Ergo $g_{n} \rightarrow g$ uniformly.
(b)Notice that $h_{n}(x)$ converges pointwise to $h_{n}(x)=0$ when x is irrational or 0 , and $h_{n}(x)=a$ when x is rational and can be written as $x=\frac{a}{b}$ such that a and b are coprime integers and $b>0$. If h_{n} converges uniformly on a bounded interval $I \subset \mathbb{R}, h_{n}$ must converge uniformly on some closed $[c, d]$ in I. Then given $\epsilon=1$, there is some N such that $n \geq N$ implies that $\left|h(x)-h_{n}(x)\right|<\epsilon$ for all $x \in[c, d]$. Without loss of generality we can assume c and d have the same sign. Now observe that when $x=\frac{a}{b}$ is rational we have

$$
\begin{aligned}
\left|h(x)-h_{n}(x)\right| & =\left|\frac{a}{b}\left(1+\frac{1}{n}\right)\left(b+\frac{1}{n}\right)-a\right| \\
& =\left|\frac{a}{n}+\frac{x}{n}+\frac{x}{n^{2}}\right| \\
& >\left|\frac{a}{n}\right| .
\end{aligned}
$$

Here the last inequality follows from the observation that a and x have the same sign, since $b>0$. However, we contend there are rational numbers $x=\frac{a}{b}$ with arbitrarily high a in any interval $[c, d]$. For suppose not. Then there would be some M such that if $x \in[c, d]$ and $x=\frac{a}{b}$, we have $|a|<M$. But $c<\frac{a}{b}<d$ implies that $b c<a<b d$. Therefore $M>|a|>\min \{|b d|,|b c|\}$. There are finitely many pairs a and b satisfying this equation for any c and d, but this is nonsense because we know there are infinitely many rationals in $[c, d]$. Therefore $|a|$ is not bounded on any interval $[c, d]$, implying that the convergence cannot $h_{n} \rightarrow h$ cannot be uniform.

- (9.3)(a) Straightforward triangle inequality. (b) Suppose that $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ are uniformly convergent, and f_{n}, g_{n} are all bounded. By (9.1) $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are uniformly bounded, i.e. there exists M_{1} such that $\left|f_{n}(x)\right|<M_{1}$ for all $n \in \mathbb{N}$ and $x \in S$ and M_{2} such that $\left|g_{n}(x)\right|<M_{2}$ for $n \in \mathbb{N}$ and $x \in S$, and therefore $|g(x)| \leq M_{2}$ for $x \in X$. Let $M=\max \left\{M_{1}, M_{2}\right\}$. Given $\epsilon>0$, choose N_{1} such that $n \geq N_{1}$ implies $\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2 M}$ and N_{2} such that $n \geq N_{2}$ implies $\left|g_{n}(x)-g(x)\right|<\frac{\epsilon}{2 M}$. Then for
$n \geq N=\max \left\{N_{1}, N_{2}\right\}$ and any $x \in X$, we have the following for $h(x)$.

$$
\begin{aligned}
\left|h_{n}(x)-h(x)\right| & =\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \\
& \leq\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)\right|+\left|f_{n}(x) g(x)-f(x) g(x)\right| \\
& =\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+\left|f_{n}(x)-f(x)\right||g(x)| \\
& <M \cdot \frac{\epsilon}{2 M}+\frac{\epsilon}{2 M} \cdot M \\
& =\epsilon
\end{aligned}
$$

We conclude that $h_{n} \rightarrow h$ uniformly.

- (9.14) We see that the pointwise limit of $\left\{f_{n}\right\}$ is $f(x)=0$ and the pointwise limit of $f_{n}^{\prime}(x)=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}}$ is the function $g(x)$ with the property that $g(0)=1$ and $g(x)=0$ for $x \neq 1$.
(a) We see that $f^{\prime}(x)=0$ exists everywhere, but $f^{\prime}(0)=0 \neq 1=g(0)$.
(b) Note that $1+n x^{2} \geq 2 \sqrt{n}|x|$, so for any $x \in \mathbb{R}$, we have $\left|f_{n}(x)\right|=\frac{|x|}{1+n x^{2}} \leq \frac{1}{2 \sqrt{n}}$. We can use this bound, which does not depend on x, to show the convergence $f_{n} \rightarrow 0$ is uniform on \mathbb{R}.
(c) Since each f_{n}^{\prime} is continuous at 0 but $g(x)$ is not continuous at 0 , our interval cannot contain 0 . Let $[a, b]$ be any closed interval such that $a>0$. Then we have

$$
\begin{aligned}
\left|\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}}\right| & =\left|\frac{1-n x^{2}}{1+n x^{2}}\right| \cdot \frac{1}{1+n x^{2}} \\
& \leq \frac{1}{1+n x^{2}} \\
& \leq \frac{1}{n a^{2}}
\end{aligned}
$$

We can use this bound, which does not depend on x, to show $f_{n} \rightarrow 0$ uniformly on $[a, b]$. The situation is similar on $[a, b]$ when $b<0$, only replacing a with b in the inequality above.

- (9.16) We know that $\int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} f$ as a sequence of real numbers. Now, since $f_{n} \rightarrow f$ uniformly, by (9.1) $\left\{f_{n}\right\}$ is uniformly bounded, i.e. $\left|f_{n}(x)\right|<M$ for all $n \in \mathbb{N}$ and $x \in[0,1]$. Ergo $\left|\int_{1-\frac{1}{n}}^{1} f_{n}\right|<M\left(\frac{1}{n}\right)=\frac{M}{n}$. Therefore we see that $\left|\int_{0}^{1-\frac{1}{n}} f_{n}-\int_{0}^{1} f_{n}\right| \leq$ $\left|\int_{0}^{1-\frac{1}{n}} f_{n}-\int_{0}^{1} f_{n}\right|+\left|\int_{0}^{1} f_{n}-\int_{0}^{1} f\right|=\left|\int_{1-\frac{1}{n}}^{1} f_{n}\right|+\left|\int_{0}^{1} f_{n}-\int_{0}^{1} f\right|<\frac{M}{n}+\left|\int_{0}^{1} f_{n}-\int_{0}^{1} f\right|$.
The last term goes to zero as n goes to infinity, so in fact $\int_{0}^{1-\frac{1}{n}} f_{n} \rightarrow \int_{0}^{1} f$.
- (9.22) We observe that $\left|a_{n} \sin (n x)\right| \leq\left|a_{n}\right|$ and likewise $\left|a_{n} \cos (n x)\right| \leq\left|a_{n}\right|$. Ergo by the Weierstrass M-test, if $\sum\left|a_{n}\right|$ converges the series $\sum_{i=1}^{\infty} a_{n} \sin (n x)$ and $\sum_{i=1}^{\infty} a_{n} \cos (n x)$ converge uniformly.
- Dini's Theorem Let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of functions on a compact metric space X which converges pointwise to a continuous function $f: X \rightarrow \mathbb{R}$ and suppose that for each x the sequence $\left\{f_{n}(x)\right\}$ is increasing, i.e. $f_{n}(x) \leq f_{m}(x)$ for all $n<m$. We will prove that $\left\{f_{n}\right\}$ in fact converges to f uniformly.
- Let $g_{n}=f-f_{n}$. Then g_{n} is a continuous function, because f and f_{n} are continuous. Therefore $V_{n}^{\epsilon}=\left\{x \in X:\left|g_{n}(x)\right|<\epsilon\right\}=g_{n}^{-1}((-\infty, \epsilon))$ is the preimage of an open set under a continuous function, hence open. Moreover, since $n<m$ implies $f_{n}(x) \leq f_{m}(x)$ for all $x \in X$, we see that $n<m$ implies that $g_{n}(x)>g_{m}(x)$. Therefore $V_{n}^{\epsilon} \subseteq V_{m}^{\epsilon}$.
- Because $f_{n} \rightarrow f$ pointwise, for each $x \in X$ there is some N_{x} such that $n \geq N_{x}$ implies that $0 \leq f-f_{n}(x)<\epsilon$. Ergo $x \in V_{n}^{\epsilon}$ for all $n \geq N_{x}$. Since this is true for all x, the sets $V_{1}^{\epsilon} \subset V_{2}^{\epsilon} \subset V_{3}^{\epsilon} \subset \cdots$ cover X. Ergo since X is compact, there is some finite subcover of the V_{n}^{ϵ} which cover X. But since the V_{n}^{ϵ} are ascending sets this just means there is some N such that V_{N}^{ϵ} contains X.
- Since $X \subseteq V_{n}^{\epsilon}$ for some N, we know that $\left|g_{n}(x)\right|=\left|f-f_{N}(x)\right|<\epsilon$ for all $x \in X$. Moreover, since $n \geq N$ implies $f_{n}(x) \geq f_{N}(x)$, in fact whenever $n \geq N$, we see that $\left|f(x)-f_{n}(x)\right|<\epsilon$. Since ϵ was arbitrary, $f_{n} \rightarrow f$ uniformly.
- A question of arclength. Let $f_{n}(x)=\frac{1}{n} \sin (n x)$, then $f_{n}^{\prime}(x)=\cos (n x)$. Ergo the arclength $S_{a}^{b}\left(f_{n}\right)=\int_{0}^{\pi} \sqrt{1+\cos ^{2}(n x)} d x$. Observe that $\cos ^{2}(n x) \geq \frac{1}{2}$ on a set A composed of the union of the intervals $\left[0, \frac{\pi}{4 n}\right],\left[\frac{(n-1) \pi}{4}, \pi\right]$, and $\left[\frac{(4 k-1) \pi}{4 n}, \frac{(4 k+1) \pi}{4}\right]$ for all $1 \leq q \leq n$. The lengths of these intervals add up to $\frac{\pi}{2}$. Ergo on A, $\sqrt{1+\cos ^{2}(n x)} \geq \sqrt{\frac{3}{2}}$. On the remaining intervals $\left[\frac{(4 \ell+1) \pi}{n}, \frac{(4 \ell+3) \pi}{n}\right]$, whose lengths also sum to $\frac{\pi}{2}$ for $0 \leq \ell \leq n-1$, we have $\sqrt{1+\cos ^{2}(n x)} \geq 1$. Therefore we have the lower bound $\int_{0}^{\pi} \sqrt{1+\cos ^{2}(n x)} d x \geq \frac{\pi}{2} \sqrt{\frac{3}{2}}+\frac{\pi}{2}(1)>\pi$. Since the arclength of $f \equiv 0$ is π, we cannot have $S_{a}^{b}\left(f_{n}\right) \rightarrow S_{a}^{b}(f)$. We would have to add a hypothesis about uniform convergence of the derivatives to ensure convergent arclengths.
- Continuity makes life easier.
- Since each f_{n}^{\prime} is continuous on (a, b), their uniform limit g is continuous. Moreover, continuous functions on closed intervals are integrable, so $\int_{x_{0}}^{x} f_{n}^{\prime}$ and $\int_{x_{0}}^{x} g$ exist for all $x \in(a, b)$ (bearing in mind that if $a<b$, the integral $\int_{b}^{a} f \equiv-\int_{a}^{b} f$). Ergo $\int_{x_{0}}^{x} f_{n}^{\prime} \rightarrow \int_{x_{0}}^{x} g$. [There's one subtlety here: we proved uniform convergence of functions defined by the integral on a closed interval $[a, b]$ in class. But it remains
the case that if $\left|f_{n}^{\prime}(x)-g(x)\right|<\epsilon$ for all $x \in(a, b), \int_{c}^{d}\left|f_{n}^{\prime}(x)-g(x)\right| \leq \epsilon(b-a)$ for any closed interval $[c, d]$ in (a, b). So the proof extends with no issues.]
- Nothing to prove; $f_{n}(x)-f_{n}\left(x_{0}\right) \rightarrow \int_{x_{0}}^{x} g$ uniformly.
- Let $f:(a, b) \rightarrow \mathbb{R}$ defined by $f(x)=L+\int_{x_{0}}^{x} g$. Notice that $f_{n}(x)=f_{n}\left(x_{0}\right)+$ $\left(f_{n}(x)-f_{n}\left(x_{0}\right)\right)$. Now $f_{n}\left(x_{0}\right) \rightarrow L$ as a sequence of real numbers, so given $\epsilon>0$ there is an N_{1} such that $\left|f_{n}\left(x_{0}\right)-L\right|<\frac{\epsilon}{2}$. Moreover, by the second part of this problem, there is an N_{2} such that $n>N_{2}$ implies that $\left|\left(f_{n}(x)-f_{n}\left(x_{0}\right)\right)-\int_{x_{0}}^{x} g\right| \leq \frac{\epsilon}{2}$ for all x in (a, b). Ergo, for $n \geq \max \left\{N_{1}, N_{2}\right\}$, we have $|f n(x)-f(x)| \leq$ $\left|f_{n}(x)-L\right|+\left|\left(f_{n}(x)-f_{n}\left(x_{0}\right)\right)-\int_{x_{0}}^{x} g\right|<\epsilon$, and therefore $f_{n} \rightarrow f$ uniformly.
- Since g is continuous, by FTC Part II, $f^{\prime}(x)=0+g(x)$.

Citation: This outline is based on the proof in Tao's Analysis II.

